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Not so smart? “Smart” drugs increase the level but
decrease the quality of cognitive effort
Elizabeth Bowman1, David Coghill2, Carsten Murawski1, Peter Bossaerts3*

The efficacy of pharmaceutical cognitive enhancers in everyday complex tasks remains to be established. Using
the knapsack optimization problem as a stylized representation of difficulty in tasks encountered in daily life, we
discover thatmethylphenidate, dextroamphetamine, andmodafinil cause knapsack value attained in the task to
diminish significantly compared to placebo, even if the chance of finding the optimal solution (~50%) is not
reduced significantly. Effort (decision time and number of steps taken to find a solution) increases significantly,
but productivity (quality of effort) decreases significantly. At the same time, productivity differences across par-
ticipants decrease, even reverse, to the extent that above-average performers end up below average and vice
versa. The latter can be attributed to increased randomness of solution strategies. Our findings suggest that
“smart drugs” increase motivation, but a reduction in quality of effort, crucial to solve complex problems,
annuls this effect.
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INTRODUCTION
Stimulant prescription-only drugs are increasingly used by employ-
ees and students as “smart drugs,” to enhance workplace or academ-
ic productivity (1–4). However, even if there is a subjective belief
that these drugs are effective as cognitive enhancers in healthy in-
dividuals, evidence to support this assumption is, at best, ambigu-
ous (5). While improved cognitive capacities such as working
memory have been shown, these effects appear to be more
evident in clinical samples than the general population (6–9), a
finding that may be explained by ceiling effects. Most puzzling is
that, even in clinical populations, mitigation of cognitive deficits
has only mild benefits for functioning, for example, at school or
in theworkplace (4), which could be related to the finding in clinical
trials that impact on executive function is smaller and/or dose
related (10, 11). Thus, a meaningful impact of such drugs on real-
world function is yet to be convincingly established.

It is often underappreciated just how difficult the tasks that
humans encounter in modern life are. At an abstract level, many
everyday tasks (Fig. 1A) belong to a mathematical class of problems
that is considered “hard,” a level of difficulty not captured by cog-
nitive tasks used in past stimulant studies [technically, these prob-
lems are in the complexity class NP (nondeterministic polynomial)
hard] (12). Typically, they are combinatorial tasks that require sys-
tematic approaches (“algorithms”) for optimal outcomes. In the
worst case, the number of computations required increases with
the size of the problem instance (number of ways to repair a
product, number of items available for purchase, number of stops
to be made on a delivery trip, etc.) such that it quickly outgrows
cognitive capacities. Approximating solutions is not a panacea, as
this can be as hard as finding the solution itself (13).

We report results from an experiment designed to determine
whether and how three popular smart drugs work using a task
that encapsulates the difficulty of real-life daily tasks: the 0-1

knapsack optimization problem (“knapsack task”). Participants
were asked to choose, from a set of N items of differing weights
and values, the subset that fits a knapsack of specified capacity
(weight constraint) while maximizing total knapsack value. We pre-
sented instances of the knapsack task by means of a user interface
with less taxation of working memory and arithmetic compared to
purely numerical interfaces or interfaces that do not track values
and weights of current choices (Fig. 1B). Besides placebo (PLC),
the three drugs administered were methylphenidate (MPH), mod-
afinil (MOD), and dextroamphetamine (DEX).

Armed with putative actions of these drugs, we hoped to shed
light on why our results emerged. The drugs MPH and DEX are
primarily indirect catecholaminergic agonists: They enhance dopa-
minergic activity in cortical and subcortical areas while also pro-
moting norepinephrine activity (14). MPH is an inhibitor of the
dopamine transporter; it also weakly inhibits the norepinephrine
transporter. DEX shares this mechanism while also augmenting
dopamine release into the synapse through interactions with a ve-
sicular monoamine transporter (15). The effects of MOD on corti-
cal and subcortical catecholamines have proved far more
challenging to uncover: It has an inhibitory effect on dopamine
transportation (16, 17) while influencing norepinephrine transpor-
tation as well (18), but it also increases glutamate in the thalamus
and hippocampus and reduces γ-aminobutyric acid in the cortex
and hypothalamus (19, 20). We expected that because of increased
dopamine, the drugs induced would increase motivation and, in
conjunction with a concurrent increase in norepinephrine, cause
an increase in effort expended on the task, which in turn would
lead to higher performance.

Forty participants, aged between 18 and 35 years, participated in
a randomized double-blinded, PLC-controlled single-dose trial of
standard adult doses of the three drugs (30 mg of MPH, 15 mg of
DEX, and 200 mg of MOD) and PLC, administered before being
asked to solve eight instances of the knapsack task. Doses are at
the high end of those administered in clinical practice, reflecting
typical doses in nonmedical settings, where use tends to be occa-
sional rather than chronic. Ethics approval was obtained from the
University of Melbourne (HREC 1749142; registered as clinical trial
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PECO: ACTRN12617001544369, U1111-1204-3404). Participants
attempted each instance twice. A time limit of 4 min was
imposed, which was binding in only ~1% of valid responses. The
four experimental sessions were at least 1 week apart from each
other. Participants were randomly assigned to conditions using a
Latin square design (Fig. 1C). To gauge the comparability of our
results to those from prior experiments, participants were also
asked to complete four tasks from the CANTAB cognitive battery
(the simple and five-choice reaction time task, the stockings of
Cambridge Task, the spatial working memory task, and the stop-
signal task) (21).

Given the well-documented erratic nature of the effects of the
drugs on baseline cognitive functions (10, 11) and the lack of under-
standing of how baseline cognitive functions translate into success
on complex combinatorial tasks such as the knapsack task, we
refrain from formulating hypotheses about the results to be expect-
ed. Instead, we adhered strictly to stringent statistical model selec-
tion protocol, using Akaike and Bayesian information criteria, to
select the best-fitting models. We then performed statistical tests
only on those models (see Materials and Methods).

RESULTS
Performance decreases with instance-specific metrics of
difficulty
Participants solved 50.3% of instances correctly (SEM = 0.9%). In-
stances differed in difficulty. To characterize the latter, we used a
metric, Sahni-k, that has successfully predicted performance of
human participants in the knapsack task in earlier experiments

(22–24). According to this metric, an instance is “easy” (Sahni-k
= 0) if it can be solved using the greedy algorithm, which is to fill
the knapsack with items in decreasing order of the ratio of value/
weight until the capacity limit is reached. If n items must be in
the knapsack before the greedy algorithm can be used to produce
the solution, then Sahni-k = n. Difficulty thus increases with
Sahni-k. In our experiment, Sahni-k varied across instances, from
0 to 4 (see Materials and Methods). Confirming findings of
earlier experiments (22–24), we observed a significant decrease in
performance (proportion of correct attempts) as Sahni-k increased
(slope = −0.56, P < 0.0001; Fig. 1D and table S1).

We used two additionalmetrics of difficulty: (i) DP complexity, a
difficulty metric derived from the dynamic programming algorithm
used to solve knapsack problems (25), and (ii) props, the number of
propagations, and hence, the time it takes MiniZinc, a widely used
general-purpose solver for hard computational problems (26).
Human performance often shows little simple correlation with
these difficulty metrics (figs. S1 and S2), but they are included in
the analysis because they explain part of the performance variance
left unexplained by Sahni-k. The difficulty metrics are positively but
imperfectly correlated (see Materials and Methods).

Drugs did not affect the chance of finding the correct
solution
We first examined the impact of the drugs on a participant’s ability
to solve an instance. To this end, we estimated a logistic model re-
lating performance to instance difficulty and drug condition, ac-
counting for possible interactions and participant-specific
random effects. We always considered several different model

Fig. 1. Task relevance, experiment design, and overall participant performance. (A) Computationally difficult tasks are ubiquitous in everyday life. (B) Task interface
with example instance (grayscale version; original in color). Items become highlighted as they are selected. (C) Timeline of experiment and Latin square randomization
across four experimental sessions. (D) Proportion of correct solutions submitted, stratified by task difficulty (Sahni-k index, from low 0 to high 4); circle: estimate of
proportion; bars, ±2 SE.
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specifications and report the one with the best goodness of fit (see
Materials and Methods for details). The best-fitting model was one
that pooled the active drug conditions and where random effects on
the intercept term at the individual level were accounted for, and
two difficulty metrics were included as explanatory variables for
performance, Sahni-k and DP complexity. There was no significant
effect of drug on performance (slope = −0.16, P = 0.11; see table S1).

Drugs decreased value attained
Next, we investigated the effect of the drugs on the value attained in
an attempt. We found that drugs had a negative effect on value
(slope = −0.003, P = 0.02; table S2), that is, participants tended to
achieve a lower value in the instances in the drug conditions. A plot
of the distribution of attained values in the drug conditions against
that under PLC shows that the negative effect extends to the entire
distribution: The chance that success is below any given level is
greater under drugs than under PLC (pointwise 95% confidence in-
tervals mostly fail to intersect; Fig. 2A).

Drugs increased time spent
We then turned to effort expended. For this, we examined the time
participants spent on an instance before submitting their suggested
solution. Participants spent substantially more time on an instance
in the drug conditions [slope(DEX) = 18.8; slope(MPH) = 29.1;

both P < 0.0001; slope(MOD) = 9.1, P = 0.10; table S3]. Inspection
of the distribution function of time spent reveals a sizeable and sig-
nificant move of the distribution under drug conditions to the left
relative to that under PLC (pointwise 95% confidence intervals fail
to intersect except in the tails; Fig. 2B). The increase in time spent
under MPH is equivalent to an increase in difficulty (Sahni-k) of
more than 4 points. That is, participants spent almost as much
time on the easiest instances underMPH as on the hardest instances
under PLC, without any corresponding improvement in
performance.

Drugs increased number of moves
Another index of effort is the number of moves of items in and out
of the suggested solution undertaken while attempting to solve an
instance (indicated by clicking on the item icon in the user interface;
see Fig. 1B). Drugs increase the number of item moves: DEX, 7.2
moves (P < 0.0001); MPH, 6.1 moves (P < 0.0001); and MOD, 1.9
moves (P > 0.1; table S3). The distribution of moves shifts leftward
under drugs (Fig. 2C), analogous to the shift observed in relation to
time spent (Fig. 2B). The size of the effect on moves of DEX and
MPH is the same as increasing difficulty (Sahni-k) by more than
2 points. Because both time spent and moves taken increase in
the drug conditions, the effect on speed is unclear. Figure 2D
shows that the distribution of the number of seconds per move

Fig. 2. Performance, effort, and speed. (A to C) Empirical cumulative distribution function under PLC (blue) and drugs (red) and pointwise 95% confidence bounds (CB;
based on Greenwood’s formula). (A) Knapsack value reached as a fraction of maximal value. PLC first-order stochastically dominates drugs, implying that the chance that
participants reach any value is uniformly lower under drugs than under PLC. (B) Effort is equal to the time spent until submission of solution. Drugs first-order stochas-
tically dominates PLC, implying that the chance of spending any amount of time is uniformly higher under drugs than under PLC. (C) Effort is equal to the number of
moves of items in/out of knapsack until submission of solution; drugs first-order stochastically dominates PLC, implying that the chance of executing any number of
moves is uniformly higher under drugs than under PLC. (D) Probability density estimates of speed under PLC (blue) and drugs (red), where speed is equal to the number of
seconds per move. Because the density under drugs is shifted to the left of that under PLC, speed tends to be higher under drugs than under PLC.
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shifted to the left, but regression analysis (table S5) fails to produce
significant relations (P > 0.05). Thus, if one measures motivation in
terms of time spent or number of items moved, drugs clearly en-
hanced motivation. If, however, motivation is to be captured by
speed, the evidence is mixed.

Drugs significantly decrease quality of effort
We therefore proceeded to study the quality of the moves made by
participants. We defined productiveness as the average gain in value
per move of attempted knapsacks (as a fraction of optimal value).
Figure 3A displays violin plots of productivity for PLC and the
three drugs separately. Productivity is uniformly smaller across all
drugs (relative to PLC). Regression analysis confirmed a significant
and sizable drop in productivity with drugs (all P < 0.001; see table
S6) with an average decrease in productivity equivalent to increas-
ing task difficulty by 1.5 (Sahni-k) points.

Drugs cause quality of effort reversals
The mean effect of drugs on productivity masks substantial hetero-
geneity across participants. Investigation of deviations in individual
productivity from the mean under PLC versus under drugs revealed

a significant tightening: The range of estimated deviations was
reduced by more than half. For MPH, the range dropped from
[−0.038, 0.0046] to [−0.02, 0.0092] (see Fig. 3B). A Wilcoxon
signed rank test confirmed that individual productivity deviations
were stochastically smaller under MPH than under PLC (P <
0.0001). This result must not be interpreted as regression to the
mean (27), as temporal participant assignment to MPH and PLC
was random. An analogous statistically significant stochastic reduc-
tion was measured for MOD relative to PLC (P = 0.02; fig. S4) and
for DEX relative to PLC (P = 0.002; fig. S5).

Significant negative correlation between productivity under
MPH and under PLC emerged [slope of the Ordinary Least
Squares (OLS)] fit = −0.13, P < 0.001 based on z-statistic computed
from Maximum Likelihood Estimation (MLE) estimates of correla-
tion of estimated random effects as reported in table S6, correlation
is equal to −0.43; Fig. 3B). We thus observed a disturbing perfor-
mance reversal. Participants who were above the mean under PLC
tended to fall below the mean under MPH. Likewise, significant re-
versals emerged underMOD (correlation of −0.55, P < 0.001; fig. S4
and table S6) and under DEX (correlation of −0.21, P = 0.01; fig. S5
and table S6).

Fig. 3. Quality of effort. (A) Violin plots of productivity, measured as average increase in value of knapsack per itemmove in/out of knapsack. Stars indicate significance
of differences in means based on a generalized linear model that accounts for confounding factors and participant-specific random effects for average productivity and
impact of drugs (table S6); *P < 0.05 and ***P < 0.001. (B and C) Estimated participant-specific (random) deviations in productivity frommean productivity. Productivity is
measured as average increase in value of knapsack per itemmove; random effects were estimated with a generalized linear model that accounts for confounding factors
and participant-specific random effects for average productivity and impact of drugs (table S6). (B) MOD against DEX. The red line shows OLS fit, with significant positive
slope (P < 0.001). (C) MPH against PLC. The red line shows OLS fit, with significant negative slope (P < 0.001). Arrows indicate range of productivity deviations under PLC
(horizontal) and MPH (vertical). The range is smaller under MPH than under PLC, implying reversion to the mean. (D) Reduction in quality of first full knapsack chosen
under drugs (right) relative to PLC (left). Quality is measured as overlap between number of items in chosen knapsack and optimal knapsack. Decrease in mean quality is
significant at **P < 0.01, based on a generalized linear model that accounts for effect of instance difficulty and overlap with items in the Greedy solution, as well as
participant-specific random effects for average quality (table S7); overlap tends to be lower under drugs than under PLC, implying lower quality of solution search.
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Across drugs, strong correlation in individual participant devia-
tions in individual productivity from the mean effects across drug
conditions emerged (table S6). The correlation was as high as 0.70
for MOD and DEX (the slope of the OLS line, close to 45°, is highly
significant: P < 0.001; Fig. 3C). Although DEX and MPH are
thought to affect neurotransmission in analogous ways, we found
a strong negative correlation between individual effects under the
two drugs [see fig. S6 (OLS slope = −0.29; P < 0.0001)].

Quality of effort decreases because moves become
more random
Last, we examined attempts at a finer level of granularity. Prior work
has revealed that the performance of an attempt to solve an instance
in the knapsack task depends on the quality of the first full knapsack
that a participant composes (23). Here, we define quality as the
number of items common to the first full knapsack and the
optimal knapsack. The quality of the first knapsack was lower in
the drug conditions compared to PLC (slope = −0.176, P = 0.003;
table S8). The mean overlap is significantly lower under drugs than
under PLC (Fig. 3D).

The first full knapsack overlaps more with the optimal one if
there is more commonality between the solution from the greedy
algorithm and the optimal solution, and this correlation increases
with instance difficulty (Sahni-k; table S7). This is consistent with
earlier findings that the first full knapsack tends to be obtained
using the greedy algorithm (23). Evidently, drugs tend to make
the first full knapsack more random. This, together with the
finding that exploration (number of moves) increases, suggests
that participants’ approach to solving a hard problem such as the
knapsack task becomes less systematic under drugs; in other
words, while drugs increase persistence, they appear to reduce the
quality of effort.

Scores on CANTAB tasks do not predict drug effects
We found significant correlation between scores on only two
CANTAB tasks (working memory task: P < 0.001; simple reaction
time task: P < 0.01) and performance in the knapsack task (perfor-
mance was assessed on the basis of whether the submitted solution
was correct; see figs. S7 and S8). However, there was no significant
interaction with drugs, in that scores on the CANTAB tasks did not
predict drug effects in the knapsack task (P > 0.10; examples: figs. S9
to S12). Likewise, we were not able to predict individual drug effects
in the knapsack task from drug effects on individual scores in the
CANTAB tasks (P > 0.10; examples: figs. S13 to S16).

DISCUSSION
While drug treatments did not cause a significant drop in the
average chance of finding the solution to the knapsack problem in-
stances, they did lead to a significant overall drop in value attained.
Whether defined as time spent or number of moves (of items in/out
of the knapsack), effort increased significantly on average. Because
both aspects of effort increased, the effect on speed (number of
seconds per move) became ambiguous.

The most notable aspect of our findings concerns heterogeneity
in quality of effort, however. Effort quality was defined as the
average increase in knapsack value permove.We found a significant
stochastic reduction in the magnitudes of individual deviations
from mean effort quality under each drug, compared to PLC.

That is, heterogeneity in effort quality under drugs stochastically
dominated that under PLC.

In addition, significant negative correlation between individual
deviations from average effort quality between each drug and PLC
emerged. This means that, if an individual exhibited above-average
increase in knapsack value per move under PLC, she tended to be
below average under MPH, DEX, and MOD. Conversely, if an indi-
vidual performed below average under PLC, the quality of effort was
above average under MPH, DEX, and MOD.

We found that this reversal in effort quality emerged because
participants became more erratic in their choices when under
drugs: The first full knapsack that they considered was more
random than under PLC. This disproportionally affected above-
average participants; those that performed below average under
PLC did increase their effort quality merely because they spent
more effort (spent more time).

Our task was computationally hard, and hence, optimal choices
require systematic thought. Random exploration is not effective in
this task, in contrast with probabilistic tasks, where strategies such
as epsilon-greedy or softmax can be optimal (28). Because quality of
choice is secondary in probabilistic tasks, it is expected that for
these, drugs such as MPH or MOD have been observed to
improve performance, albeit mildly (29–34).

Good effort allocation is primordial for the knapsack task. It has
been argued that dopamine and norepinephrine, two neuromodu-
lators targeted by the drugs administered in this study, regulate the
trade-off between reward and effort cost (35) and that this trade-off
is governed by the overarching goal of maximizing the expected
value of control; the latter steers not only the quantity of effort
but also the type of effort chosen (referred to as efficacy). Evidently,
this theory elucidates the workings of the drugs that we adminis-
tered: They boost subjective reward while reducing perceived
effort, but they have a detrimental effect on efficacy.

The drugs that we administered are known to reduce perfor-
mance of healthy participants in some of the CANTAB tasks that
we included in our experiment (6–9). We confirmed these effects
and extended them to the knapsack task. However, we failed to
predict individual drug effects in the knapsack task from scores
on the CANTAB tasks or from drug effects in the CANTAB tasks.

When compared to recorded effects on baseline cognition
(CANTAB tasks) in patients with attention deficit hyperactivity dis-
order (ADHD) (8, 10, 11), there appears to be overlap: Evidence of
effects is scattered, and if they emerge, then effects are characterized
by considerable heterogeneity. Hence, the evidence from healthy
participants appears to be an extension of that of the clinical pop-
ulation, so that ADHDmay not be a categorical disorder but instead
better described as a dimensional disorder (36, 37).

Because the knapsack task encapsulates difficulty encountered in
everyday problem-solving, our paradigm could help shed light on
how medications such as MPH improve the day-to-day functioning
of patients suffering from, e.g., ADHD. In addition, the knapsack
task facilitates the much-needed comparison across clinical and
subclinical populations (36). Last, for subclinical populations, our
paradigm provides a convenient framework with which to eventu-
ally discover the genuinely smart drugs, i.e., the drugs that not only
increase effort but also enhance quality of effort.
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MATERIALS AND METHODS
Experimental protocol
Forty healthy male (n = 17) and female (n = 23) volunteers between
the ages of 18 and 35 (mean, 24.5 years) were recruited from campus
advertisements. All volunteers were screened by a clinician via semi-
structured interview and examination before enrollment in the
study. Study exclusion criteria included history of psychiatric or
neurological illness including epilepsy or head injury, previous
use of psychotropic medication, history of substantial drug use,
heart conditions (including high blood pressure, defined as above
140 mm/Hg systolic and/or 90 mm/Hg diastolic pressure as mea-
sured at the initial assessment session), pregnancy, or glaucoma.
A brief cardiac examination was performed, and any family
history of sudden death of a first-degree relative through cardiac
or unknown causes before the age of 50 years old also excluded
the participant. Participants were asked to refrain from any
alcohol and caffeine from midnight the night before each
testing session.

Participants were required to attend four testing sessions, each
session spaced at least 7 days from the previous session. At each
session, participants received one of either 200 mg of MOD, 30
mg of MPH, 15 mg of DEX, or microcrystalline cellulose (Avicel)
PLC. All medications were dispensed as identical white capsules
in double-blinded packaging. Participants were randomly allocated
into four groups, each group receiving a different sequence of med-
ications and PLC across sessions according to a counterbalanced
Latin square design (see Fig. 1B). Randomization sequences were
generated by the Melbourne Clinical Trials Centre (Melbourne
Children’s Campus).

Participants arrived at the testing venue in the morning and had
their blood pressure measured after at least 5 min of sitting quietly.
The capsule for the session was given with a glass of water, and a 90-
min waiting period commenced. Participants were encouraged to
bring study or quiet reading to do during this period. After 90
min, participants’ blood pressurewasmeasured, and they then com-
pleted the complex optimization and cognitive tasks. Upon comple-
tion of all the tasks, participants’ blood pressure was measured one
final time, and participants were then free to go. The experiment
was registered as a clinical trial (PECO: ACTRN12617001544369,
U1111-1204-3404). Ethics approval was obtained from the Univer-
sity of Melbourne (HREC1749142).

The knapsack task
The knapsack optimization problem (“knapsack task”) is a combi-
natorial optimization task, where the participant is presented with a
number of items, each item having an associated weight and value.
The goal is to find the combination of items that maximizes the
combined value of the selected items, while the combined weight

of the items remains beneath a given weight limit. The knapsack
task is in the class of NP-time hard problems.

Participants were presented with eight unique instances of the
knapsack task, with each instance containing 10 or 12 different
items and a different weight limit. The task was presented via
laptop, and participants clicked on items to select or deselect
them from their solution. The problem’s weight limit and the cu-
mulative weight and value of the selected items were displayed at
the top of the screen. Participants were prevented from selecting
items that would exceed the weight limit. A 4-min limit was
imposed on each presentation of the problem, and participants
could submit their solution at any time during those 4min by press-
ing the space bar. Participants were not informed whether their sol-
ution was optimal or not, and each instance was presented twice.
Each selection or deselection of an item before submission, as
well as the timing of each choice, is recorded for later analysis.

The same eight instances were used as those reported in (23).
Details of the instances, including solutions, can be found there.
Table 1 lists the instances along with metrics of difficulty used
here. Instances are numbered as in the article.

Difficulty metrics are positively but far from perfectly correlated.
Table 2 displays the correlation matrix.

CANTAB tasks
Simple and five-choice reaction time task
The reaction time tasks assess the participants’ response speed to a
visual cue in either a predictable location (the simple variant) or in
one of five locations (the five-choice variant). The mean duration
between releasing the response button and touching the target
button, calculated across all correct trials, is the major outcome of
interest.
Stockings of Cambridge
The stockings of Cambridge task examines spatial planning and, to
a lesser extent, spatial working memory. The participant is required
match a sequential pattern of balls while following rules regarding
the permitted movement of the balls in space. The task difficulty
varies by the minimum number of moves required to match the
given pattern and ranges from two to five moves. The major
outcome of interest is the number of patterns matched in the

Table 1. Difficulty of instances used in the knapsack task.

Instance (#items) 1 (10) 2 (10) 3 (12) 4 (10) 5 (12) 6 (12) 7 (12) 8 (10)

Sahni-k 1 3 2 0 1 1 4 3

DC complexity 109 100 117 105 46 143 124 80

MiniZinc #props 3577 1117 25,961 4133 6278 19,417 16,498 9155

Table 2. Correlations between difficulty metrics. SE = 0.20 (based on
Fisher’s transformation).

DC complexity MiniZinc #props

Sahni-k 0.08 0.20

DC complexity 0.52
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minimum moves, calculated across all correct trials. The change in
number of correct trials with increasing difficulty can also be exam-
ined. Note that on one occasion, the app-based task failed to run,
resulting in no data for that task for that session.
Spatial working memory
The spatial working memory task is a test of the participant’s ability
to retain spatial information in working memory. The participant is
required to collect tokens hidden in a randomly placed array of
boxes, where a found token will never reappear inside the same
box. Task difficulty is increased by increasing the number of
tokens and boxes, starting with 4, and progressing through 6, 8,
and 12 box arrays. Performance is most often calculated as a “strat-
egy score,” that is, the number of times their search for the token
started from the same box, implying that a specific spatial strategy
is used. Between error and within error counts are also often exam-
ined, being the number of times a box in which a token has previ-
ously been found is revisited, the number of times a participant
revisits a box already shown to be empty.
Stop signal task
The stop signal task is a test of response inhibition, generating an
estimate of stop signal reaction time using staircase functions.
The participant presses a left-hand button when a cue arrow indi-
cates left and a right-hand button when the cue indicates right,
except for when a tone is heard. If a tone is heard, the participant
should refrain from pressing the button. The timing of the tone in
relation to the cue is adjusted throughout the trial, depending on
performance, until the participant is able to stop in only approxi-
mately 50% of trials. This duration between cue and tone is the
major measure of interest.

Statistical analysis
Formal statistical tests of drug effects, both at the population level,
and if deemed appropriate, at the individual level, are based on
random-effects generalized linear modeling using the MATLAB
function glmfit in release 2022b (The MathWorks Inc., MA,
USA). Absent specific hypotheses, model specification, including
whether (individual) random effects had to be included and at
what level (per drug), or for all drug treatments combined, was
based on strict adherence to model selection using the Akaike
and Bayesian information criteria.

MATLAB code that generates the statistics and figures, along
with underlying data, can be found in the notebook “figures.mlx”
and “SOM.mlx” of the GitHub repository bmmlab/PECO (https://
zenodo.org/badge/latestdoi/592775835). TheMATLAB code allows
the reader to understand exactly the nature of the model estimated.
The code also facilitates replication. The combination of code and
data allows the reader to replicate all statistical results reported in
the article and its Supplementary Materials, as well as generating
all tables and figures. Tests of stochastic dominance of individual
random effects under drugs versus under PLC were based on the
Wilcoxon signed rank test of the null that the sizes (squares) of
the individual random effects are exchangeable under the
treatments.

Supplementary Materials
This PDF file includes:
Figs. S1 to S16
Tables S1 to S7
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